Workshop Pengoptimalan AI
25-28 Februari 2025
Nusantara Power Services | Akhmad Guntar
Teknik "Thinking Step by Step" membantu AI menganalisis masalah secara sistematis dengan memecah proses berpikir menjadi tahapan-tahapan yang jelas dan terstruktur.
Dengan memberikan tahapan yang eksplisit, kita membantu AI untuk:
<employee_data>
Nama: Budi Santoso
Posisi: Operator Senior
Masa Kerja: 5 tahun
Performance Metrics:
- Technical Skills: 85%
- Safety Compliance: 90%
- Team Leadership: 75%
- Initiative: 80%
Training History:
- Basic Operations (2020)
- Advanced Troubleshooting (2022)
- Leadership Fundamentals (2023)
</employee_data>
<analysis_steps>
1. Evaluasi Kinerja Saat Ini:
- Analisis KPI scores
- Review historical performance
- Identify strength areas
- Note improvement needs
2. Gap Analysis:
- Compare against job requirements
- Assess leadership readiness
- Review technical competencies
- Evaluate soft skills
3. Development Needs:
- List priority areas
- Identify skill gaps
- Define learning objectives
- Consider career path
4. Resource Assessment:
- Available training programs
- Mentoring opportunities
- On-job learning options
- External courses
5. Action Plan Development:
- Set SMART goals
- Define timeline
- Allocate resources
- Plan evaluation methods
</analysis_steps>
<expected_output>
1. Performance Summary
2. Development Priorities
3. Recommended Actions
4. Timeline & Milestones
5. Success Metrics
</expected_output>
<incident_data>
Tanggal: 15 Feb 2025
Lokasi: Cooling Tower Area
Tipe: Near Miss
Deskripsi: Teknisi hampir terpeleset saat melakukan inspeksi karena genangan air
Initial Actions:
- Area dibarricade
- Warning sign dipasang
- Supervisor dinotifikasi
</incident_data>
<investigation_steps>
1. Data Collection:
- Gather witness statements
- Review CCTV footage
- Check maintenance records
- Review weather conditions
2. Root Cause Analysis:
- Apply 5-Why method
- Identify contributing factors
- Review similar incidents
- Check existing controls
3. Risk Assessment:
- Evaluate potential severity
- Calculate probability
- Consider exposure level
- Assess existing barriers
4. Control Evaluation:
- Review current procedures
- Check equipment condition
- Assess training adequacy
- Evaluate supervision
5. Recommendations:
- Engineering controls
- Administrative measures
- PPE requirements
- Training needs
</investigation_steps>
<deliverables>
1. Investigation Report
2. Root Cause Analysis
3. Corrective Actions
4. Preventive Measures
5. Implementation Timeline
</deliverables>
<vendor_data>
Kebutuhan: Spare Part Turbin
Budget: 500 juta
Timeline: Delivery dalam 3 bulan
Vendor Shortlist:
1. PT Alpha Engineering
- Quote: 480 juta
- Delivery: 12 minggu
- Payment terms: 30/70
- OEM Authorized
2. PT Beta Solutions
- Quote: 450 juta
- Delivery: 14 minggu
- Payment terms: 50/50
- Non-OEM, berpengalaman
3. PT Gamma Industries
- Quote: 520 juta
- Delivery: 10 minggu
- Payment terms: 20/80
- OEM Authorized
</vendor_data>
<evaluation_steps>
1. Technical Evaluation:
- Part specifications
- Quality certifications
- Manufacturing capability
- Track record
- After-sales support
2. Commercial Analysis:
- Price comparison
- Payment terms
- Total cost of ownership
- Financial stability
- Warranty coverage
3. Risk Assessment:
- Delivery reliability
- Quality assurance
- Supply chain risks
- Compliance issues
- Business continuity
4. Vendor Comparison:
- Create scoring matrix
- Weight criteria
- Calculate total scores
- Rank vendors
- Document justification
5. Reference Check:
- Contact references
- Verify performance
- Check compliance
- Review complaints
- Assess reputation
</evaluation_steps>
<decision_output>
1. Vendor Rankings
2. Selection Justification
3. Risk Mitigation Plan
4. Contract Recommendations
5. Performance Metrics
</decision_output>
<inventory_data>
Kategori: Critical Turbine Spares
Period: Jan-Dec 2024
Items Analysis:
1. Bearing Sets
- Stock: 3 sets
- Usage: 4 sets/year
- Lead Time: 16 weeks
- Cost: 300 juta/set
2. Control Valves
- Stock: 2 units
- Usage: 2 units/year
- Lead Time: 20 weeks
- Cost: 250 juta/unit
</inventory_data>
<optimization_steps>
1. Demand Analysis:
- Historical consumption
- Seasonality patterns
- Emergency usage
- Project requirements
- Growth forecast
2. Stock Level Optimization:
- Min/max levels
- Reorder points
- Safety stock
- Economic order quantity
- Storage capacity
3. Lead Time Management:
- Supplier capability
- Transportation options
- Custom clearance
- Internal processes
- Buffer periods
4. Cost Optimization:
- Carrying costs
- Ordering costs
- Stock-out costs
- Transportation costs
- Storage costs
5. Risk Assessment:
- Supply chain disruption
- Obsolescence risk
- Price volatility
- Quality issues
- Vendor reliability
</optimization_steps>
<deliverables>
1. Inventory Strategy
2. Order Schedule
3. Cost Optimization Plan
4. Risk Mitigation Steps
5. Performance Metrics
</deliverables>
<operational_data>
Unit: Gas Turbine Unit 1
Time: 15 Feb 2025, 10:00
Current Parameters:
- Load: 180 MW
- GT Exhaust Temp: 538°C
- Compressor Ratio: 15.2
- Fuel Flow: 45 MMSCFD
- NOx: 25 ppm
Ambient Conditions:
- Temperature: 32°C
- Humidity: 85%
- Barometric: 1013 mbar
</operational_data>
<analysis_steps>
1. Performance Review:
- Compare vs design values
- Check operating limits
- Monitor trends
- Identify deviations
- Calculate efficiencies
2. Parameter Analysis:
- Temperature relationships
- Pressure ratios
- Flow characteristics
- Heat rate calculation
- Emissions levels
3. Constraint Evaluation:
- Operating limits
- Environmental limits
- Grid requirements
- Fuel restrictions
- Equipment conditions
4. Optimization Analysis:
- IGV positioning
- Fuel/air ratio
- Cooling flows
- Steam injection
- Combustion tuning
5. Action Planning:
- Parameter adjustments
- Monitoring points
- Control settings
- Alarm reviews
- Documentation updates
</analysis_steps>
<output_required>
1. Performance Summary
2. Optimization Steps
3. Operating Guidelines
4. Monitoring Plan
5. Expected Benefits
</output_required>
<equipment_data>
Equipment: Boiler Feed Pump
Type: Horizontal Split Case
Capacity: 1000 m3/h
Speed: 2980 rpm
Vibration Readings:
- Inboard Bearing: 9.2 mm/s
- Outboard Bearing: 7.8 mm/s
- Axial: 4.5 mm/s
- Dominant Freq: 1X
Operating Parameters:
- Suction Press: 2.1 kg/cm2
- Discharge Press: 85 kg/cm2
- Flow: 850 m3/h
</equipment_data>
<analysis_steps>
1. Data Collection:
- Vibration spectrum
- Phase readings
- Operating parameters
- Maintenance history
- Baseline data
2. Vibration Analysis:
- Amplitude evaluation
- Frequency analysis
- Phase relationship
- Trend comparison
- Pattern recognition
3. Root Cause Analysis:
- Mechanical factors
- Hydraulic conditions
- Structural issues
- Operating conditions
- Maintenance factors
4. Failure Mode Assessment:
- Bearing conditions
- Alignment status
- Balance condition
- Foundation integrity
- Coupling status
5. Solution Development:
- Immediate actions
- Short-term fixes
- Long-term solutions
- Preventive measures
- Monitoring requirements
</analysis_steps>
<recommendations>
1. Corrective Actions
2. Implementation Steps
3. Required Resources
4. Timeline
5. Success Criteria
</recommendations>
<transformer_data>
Equipment: Main Transformer GT-1
Rating: 500 MVA, 21/525 kV
Age: 15 years
Last Major Maintenance: 2022
Test Results:
1. Dissolved Gas Analysis (DGA):
- H2: 150 ppm
- CH4: 180 ppm
- C2H2: 2 ppm
- C2H4: 145 ppm
- CO: 450 ppm
2. Oil Quality:
- Moisture: 18 ppm
- Acidity: 0.15 mgKOH/g
- BDV: 48 kV
- IFT: 28 mN/m
3. Electrical Tests:
- Winding Resistance: +2% change
- Tan Delta: 0.6%
- Core Insulation: 2 GΩ
</transformer_data>
<analysis_steps>
1. DGA Interpretation:
- Calculate gas ratios
- Compare with IEEE limits
- Identify fault patterns
- Check generation rates
- Assess severity
2. Oil Quality Assessment:
- Compare with standards
- Evaluate degradation
- Check moisture trends
- Assess contamination
- Review aging indicators
3. Electrical Test Analysis:
- Compare with baseline
- Check deviation trends
- Evaluate insulation
- Assess power factor
- Review core condition
4. Risk Assessment:
- Identify failure modes
- Calculate risk levels
- Review criticality
- Check redundancy
- Assess consequences
5. Recommendations Development:
- Maintenance actions
- Monitoring frequency
- Operating restrictions
- Spare parts needs
- Long-term strategy
</analysis_steps>
<deliverables>
1. Condition Assessment
2. Risk Evaluation
3. Maintenance Plan
4. Operating Guidelines
5. Monitoring Strategy
</deliverables>
<control_system_data>
System: Turbine Governor
Issue: Speed fluctuation ±2%
Duration: Last 48 hours
Parameters:
- Speed Setpoint: 3000 rpm
- Actual Speed: 2940-3060 rpm
- Valve Position: 65-75%
- Load: 160-180 MW
Alarms:
- Speed deviation high
- Governor hunting
- Valve position oscillation
</control_system_data>
<troubleshooting_steps>
1. Initial Data Collection:
- Trend analysis
- Alarm history
- Parameter correlation
- System changes
- Operating conditions
2. Signal Verification:
- Speed sensor inputs
- Feedback signals
- Control outputs
- Valve response
- System stability
3. Control Loop Analysis:
- PID parameters
- Response time
- Dead band settings
- Gain adjustments
- Stability margins
4. Hardware Assessment:
- Sensor condition
- Valve mechanics
- Hydraulic system
- Electrical connections
- Controller status
5. Root Cause Identification:
- Mechanical issues
- Control problems
- Tuning requirements
- System interactions
- External factors
</troubleshooting_steps>
<action_plan>
1. Immediate Fixes
2. Parameter Adjustments
3. Component Replacements
4. Testing Procedures
5. Monitoring Requirements
</action_plan>
<performance_data>
Unit: Combined Cycle Block 1
Period: Last 3 months
Key Parameters:
- Gross Heat Rate: 7250 kJ/kWh
- Net Output: 650 MW
- GT Exhaust Temp: 585°C
- HRSG Steam Temp: 540°C
- Condenser Vacuum: 0.085 bar
Design Values:
- Design Heat Rate: 7000 kJ/kWh
- Rated Output: 660 MW
- Reference Conditions at ISO
</performance_data>
<analysis_steps>
1. Performance Calculation:
- Heat rate deviation
- Output shortfall
- Efficiency losses
- Correction factors
- Baseline comparison
2. Component Analysis:
- Gas turbine performance
- HRSG effectiveness
- Steam cycle efficiency
- Auxiliary power
- Balance of plant
3. Loss Assessment:
- Thermal losses
- Mechanical losses
- Electrical losses
- Auxiliary consumption
- Process inefficiencies
4. Impact Quantification:
- Fuel cost impact
- Revenue loss
- Maintenance costs
- Environmental impact
- Capacity limitations
5. Optimization Planning:
- Quick wins
- Major improvements
- Investment needs
- Operational changes
- Maintenance requirements
</analysis_steps>
<recommendations>
1. Immediate Actions
2. Short-term Improvements
3. Long-term Projects
4. Performance Targets
5. Monitoring Plan
</recommendations>
<monitoring_data>
Equipment: Boiler Feed Pump
Monitoring Period: 6 months
Condition Data:
1. Vibration Trend:
- DE Bearing: 4.2 → 5.8 mm/s
- NDE Bearing: 3.8 → 4.5 mm/s
- Dominant freq: 1X running speed
2. Oil Analysis:
- Fe content: 15 → 28 ppm
- Cu content: 5 → 12 ppm
- Viscosity: Within spec
3. Performance:
- Flow: 98% → 95%
- Efficiency: 82% → 78%
- Power: +5% increase
</monitoring_data>
<analysis_steps>
1. Trend Evaluation:
- Rate of change
- Pattern recognition
- Correlation analysis
- Threshold comparison
- Historical patterns
2. Failure Mode Analysis:
- Symptom matching
- Degradation models
- Failure mechanisms
- Contributing factors
- Risk assessment
3. Prediction Modeling:
- Statistical analysis
- Remaining life
- Failure probability
- Confidence levels
- Risk scenarios
4. Impact Assessment:
- Production impact
- Safety implications
- Environmental risks
- Maintenance costs
- Replacement timing
5. Action Planning:
- Monitoring frequency
- Inspection needs
- Maintenance timing
- Resource requirements
- Contingency plans
</analysis_steps>
<output_required>
1. Condition Assessment
2. Failure Prediction
3. Risk Evaluation
4. Maintenance Strategy
5. Resource Planning
</output_required>