Workshop AI Prompting: Zero Prompting

Workshop Pengoptimalan AI

25-28 Februari 2025

Nusantara Power Services | Akhmad Guntar

Konsep Zero Prompting

Zero prompting adalah teknik meminta AI untuk melakukan tugas tanpa memberikan contoh atau konteks tambahan. Teknik ini efektif untuk:

Tips Zero Prompting

Contoh Zero Prompting per Departemen

HRD

"Evaluasi hasil interview kandidat berikut: Teknis: 85/100 Komunikasi: 78/100 Problem Solving: 82/100 Culture Fit: 88/100 Pengalaman: 5 tahun di bidang yang relevan"
Berdasarkan hasil evaluasi:

Kekuatan:
- Culture fit sangat baik (88/100), menunjukkan potensi adaptasi yang baik dengan tim
- Kompetensi teknis kuat (85/100), memenuhi kebutuhan posisi
- Pengalaman 5 tahun memberikan fondasi yang solid

Area Pengembangan:
- Komunikasi (78/100) perlu ditingkatkan untuk level senior
- Problem solving (82/100) cukup baik tapi masih ada ruang improvement

Rekomendasi: HIRED
Justifikasi:
- Skor total di atas threshold minimum (>80)
- Pengalaman relevan memadai
- Kelemahan di area komunikasi dapat ditingkatkan melalui training

Catatan Onboarding:
- Sertakan dalam program communication skill development
- Assign mentor untuk akselerasi adaptasi
- Review progress dalam 3 bulan pertama

Safety Officer

"Klasifikasikan tingkat bahaya (HIGH/MEDIUM/LOW) dari kondisi berikut: Ditemukan genangan oli di area walking platform turbine deck, sudah diberi absorbent dan safety cone, tapi belum dibersihkan dalam 2 jam terakhir."
Tingkat Bahaya: HIGH

Alasan Klasifikasi:
1. Lokasi kritis - turbine deck adalah area vital dengan traffic tinggi
2. Durasi exposure - 2 jam adalah terlalu lama untuk hazard yang belum diatasi
3. Potensi bahaya ganda:
   - Slip and fall hazard dari genangan oli
   - Fire hazard dari material mudah terbakar
4. Kontrol eksisting tidak memadai:
   - Absorbent dan safety cone hanya kontrol sementara
   - Tidak ada tindak lanjut pembersihan

Tindakan yang Diperlukan:
1. Immediate Actions:
   - Isolasi area dengan barrier tape
   - Lakukan pembersihan segera
   - Investigasi sumber kebocoran

2. Preventive Measures:
   - Review prosedur response time
   - Tingkatkan frekuensi inspeksi
   - Update SOP housekeeping

Referensi:
- NFPA 70E Standard
- OSHA Walking-Working Surfaces
- Site Safety Procedures

Pengadaan

"Bandingkan tiga penawaran vendor berikut dan rekomendasikan pilihan terbaik: Vendor A: - Harga: 450 juta - Delivery: 12 minggu - Payment: 30/70 - OEM Parts Vendor B: - Harga: 380 juta - Delivery: 16 minggu - Payment: 50/50 - Compatible Parts Vendor C: - Harga: 520 juta - Delivery: 8 minggu - Payment: 20/80 - OEM Parts"
Analisis Komparatif:

1. Biaya
   Vendor A: Moderate (450 juta)
   Vendor B: Lowest (380 juta, -15.5%)
   Vendor C: Highest (520 juta, +15.5%)

2. Delivery Time
   Vendor A: Standard (12 minggu)
   Vendor B: Longest (16 minggu, +33%)
   Vendor C: Best (8 minggu, -33%)

3. Payment Terms
   Vendor A: Favorable (30/70)
   Vendor B: Least Favorable (50/50)
   Vendor C: Most Favorable (20/80)

4. Parts Quality
   Vendor A: High (OEM)
   Vendor B: Medium (Compatible)
   Vendor C: High (OEM)

Rekomendasi: Vendor A

Justifikasi:
1. Balance optimal antara harga dan kualitas
2. Delivery time masih dalam batas acceptable
3. Payment terms cukup menguntungkan
4. Risiko kualitas minimal dengan parts OEM

Catatan:
- Vendor B terlalu berisiko dengan parts non-OEM
- Vendor C premium cost tidak sebanding benefit
- Vendor A menawarkan total value terbaik

Supply Chain

"Tentukan level reorder point dan safety stock untuk spare part dengan data: - Monthly usage: 8 units - Lead time: 12 weeks - Critical part for turbine - Stock out cost: >100 juta/hari - Current stock: 6 units - Unit price: 25 juta"
Analisis Inventory Parameters:

1. Reorder Point Calculation:
   - Monthly usage = 8 units
   - Weekly usage = 2 units
   - Lead time usage = 2 units × 12 weeks = 24 units
   - Base ROP = 24 units

2. Safety Stock Determination:
   - Criticality: High (turbine operations)
   - Stock out impact: Severe (>100 juta/hari)
   - Recommended safety factor: 2 months
   - Safety stock = 16 units (2 × monthly usage)

3. Total ROP = 40 units
   (Base ROP + Safety Stock)

4. Current Status:
   - Current stock (6 units) BELOW minimum level
   - Immediate order required
   - Order quantity recommendation: 40 units

5. Financial Impact:
   - Order value: 1 milyar (40 × 25 juta)
   - Holding cost consideration: 2.5% monthly
   - Risk mitigation value: >3 milyar/month

Rekomendasi:
1. Place immediate order for 40 units
2. Review lead time with vendors
3. Implement VMI program consideration
4. Develop alternate vendors

Monitoring Requirements:
- Weekly stock review
- Monthly usage trend analysis
- Quarterly parameter review

Operator Pembangkit

"Tentukan tindakan yang harus diambil untuk kondisi operasi berikut: - GT exhaust temp naik dari 535°C ke 548°C dalam 30 menit - Beban tetap di 150 MW - Ambient temp 32°C - Compressor inlet pressure normal - Vibrasi normal"
Analisis Kondisi:

1. Parameter Kritis:
   - Exhaust temp rise: +13°C
   - Rate: 26°C per jam
   - Trend: Cepat
   - Severity: WARNING level

2. Status Operasi:
   - Beban stabil
   - Ambient normal
   - Inlet normal
   - No mechanical issues

3. Kemungkinan Penyebab:
   - Kompressor fouling
   - Combustor issue
   - IGV malfunction
   - Air/fuel ratio tidak optimal

Tindakan Segera:
1. Monitor trending setiap 5 menit
2. Check IGV position & response
3. Verifikasi fuel gas quality
4. Review combustor parameters
5. Prepare load reduction if temp > 550°C

Eskalasi Required:
- Notify shift supervisor
- Alert maintenance team
- Document di log book
- Prepare contingency plan

Batas Operasi:
- WARNING: >545°C
- TRIP: >565°C
- Trend limit: 30°C/jam

Engineer Mekanik

"Klasifikasikan prioritas perbaikan (IMMEDIATE/PLANNED/ROUTINE) untuk kondisi berikut: Feed water pump mengalami kenaikan vibrasi dari 4.5 mm/s ke 6.8 mm/s dalam satu minggu, dominan di 1X running speed, bearing temp normal."
Klasifikasi: PLANNED

Analisis Kondisi:
1. Vibrasi Level:
   - Current: 6.8 mm/s (WARNING)
   - Baseline: 4.5 mm/s
   - Rate: +0.33 mm/s per hari
   - ISO Standard: Alert 7.1 mm/s

2. Karakteristik:
   - 1X dominant = unbalance/misalignment
   - Bearing temp OK = no immediate bearing risk
   - Trend gradual = developing issue

3. Risk Assessment:
   - Equipment: Medium
   - Production: Low
   - Safety: Low
   - Environmental: Low

Justifikasi PLANNED:
1. Masih di bawah trip limit
2. Trend kenaikan moderate
3. No secondary symptoms
4. Backup pump available

Rekomendasi:
1. Schedule repair next weekend
2. Prepare balancing equipment
3. Check alignment
4. Monitor setiap 4 jam
5. Prepare spare parts

Monitoring Requirements:
- Vibration: every 4 hours
- Bearing temp: continuous
- Performance parameters
- Noise level changes

Engineer Listrik

"Interpretasikan hasil tes DGA trafo berikut dan tentukan kondisinya: H2: 150 ppm CH4: 120 ppm C2H2: 3 ppm C2H4: 150 ppm C2H6: 45 ppm CO: 500 ppm CO2: 3500 ppm Baseline 6 bulan lalu normal semua."
Analisis DGA:

1. Gas Ratios:
   CH4/H2 = 0.8 (Normal < 0.1)
   C2H2/C2H4 = 0.02 (Normal < 0.1)
   C2H4/C2H6 = 3.33 (High > 3)
   CO2/CO = 7 (Normal 3-10)

2. Nilai Kritis:
   - C2H4 (150 ppm) > IEEE limit (100 ppm)
   - CO (500 ppm) > IEEE limit (350 ppm)
   - C2H2 masih normal
   - H2 borderline

3. Pattern Matching:
   - High C2H4/C2H6: Thermal fault
   - Low C2H2/C2H4: No arcing
   - Elevated CO: Paper aging

Diagnosis: Thermal Fault T3 (>700°C)
Severity: MEDIUM-HIGH

Rekomendasi:
1. Increase sampling frequency to monthly
2. Perform IR scan on tank and connections
3. Check loading history
4. Review cooling system operation
5. Plan for oil treatment

Required Actions:
- Monitor load carefully
- Check cooling fans/pumps
- Prepare contingency plan
- Schedule maintenance window

Teknisi I&C

"Berikan troubleshooting steps untuk kondisi berikut: Flow transmitter FT-101 menunjukkan pembacaan 0% konstan, tidak ada alarm pada DCS, loop power OK, pressure tap clear, transmitter baru dikalibrasi bulan lalu."
Troubleshooting Sequence:

1. Initial Checks:
   - Verify 24VDC power supply
   - Check cable continuity
   - Verify grounding
   - Inspect physical damage
   - Check impulse lines

2. Signal Path Testing:
   Loop Check:
   - Measure 4-20mA at transmitter
   - Measure at junction box
   - Measure at marshalling panel
   - Check DCS input card

3. Transmitter Diagnostics:
   - Connect HART communicator
   - Check configuration
   - Verify range settings
   - Read error messages
   - Check damping value

4. Process Verification:
   - Compare with parallel measurements
   - Check upstream/downstream pressures
   - Verify process conditions
   - Review recent changes

Likely Causes (Ranked):
1. Electronics failure (most probable)
2. Circuit open/short
3. Configuration error
4. Process isolation
5. DCS card issue

Required Tools:
- Multimeter
- HART communicator
- Calibrator
- Test leads
- Loop drawing

Documentation:
- Update maintenance log
- Record findings
- Note serial number
- Document settings
- Take backup configuration

Engineer Efisiensi

"Analisis penyebab kenaikan heat rate sebesar 250 kJ/kWh dari baseline dengan kondisi: - Beban stabil 200 MW - Condenser vacuum 0.085 bar - HRSG approach temp +5°C - Fuel composition normal - Make up water meningkat 2 ton/jam"
Performance Impact Analysis:

1. Heat Rate Deviation:
   - Current HR increase: 250 kJ/kWh
   - Percentage: ~3.5% degradation
   - Impact: ~2.5M/bulan fuel cost
   
2. Contributing Factors:
   a) HRSG Performance:
      - Approach temp +5°C = 100 kJ/kWh
      - Potential fouling
      - Stack temp likely high
   
   b) Cycle Losses:
      - Make up +2 T/h = 75 kJ/kWh
      - Steam/water leaks likely
      - Blowdown may be high
   
   c) Condenser:
      - Vacuum normal
      - Minimal impact

3. Root Causes (Probability):
   HIGH:
   - HRSG tube fouling
   - Steam/water leaks
   - High blowdown rate
   
   MEDIUM:
   - Combustion issues
   - Component degradation
   
   LOW:
   - Instrumentation error
   - Fuel quality

Immediate Actions:
1. HRSG inspection
2. Steam leak survey
3. Review water chemistry
4. Check blowdown control

Long-term Recommendations:
1. Schedule HRSG cleaning
2. Optimize water chemistry
3. Review maintenance plan
4. Update monitoring system

Teknisi Predictive Maintenance

"Prediksi remaining useful life berdasarkan data berikut: Motor pompa boiler feed: - Vibrasi naik 0.2 mm/s per minggu (current 5.5 mm/s) - Bearing temp naik 2°C per bulan (current 75°C) - Iron content di oil naik 3 ppm per bulan (current 25 ppm) - Baseline: vibrasi 3 mm/s, temp 65°C, Fe 15 ppm Alarm limits: vibrasi 7 mm/s, temp 85°C, Fe 40 ppm"
Remaining Life Analysis:

1. Trend Calculations:
   Vibrasi:
   - Current gap to limit: 1.5 mm/s
   - Rate: 0.2 mm/s per minggu
   - Time to limit: 7.5 minggu
   
   Temperature:
   - Gap to limit: 10°C
   - Rate: 2°C per bulan
   - Time to limit: 5 bulan
   
   Iron Content:
   - Gap to limit: 15 ppm
   - Rate: 3 ppm per bulan
   - Time to limit: 5 bulan

2. Failure Mode Analysis:
   Primary indicators:
   - Bearing wear (Fe content)
   - Mechanical looseness (vibrasi)
   - Friction increase (temp)
   
   Most critical: Vibrasi

3. Confidence Level:
   - Data quality: High
   - Trend linearity: Good
   - External factors: Minimal
   - Prediction confidence: 85%

4. RUL Prediction:
   Worst case: 7.5 minggu
   Best case: 5 bulan
   Most probable: 2 bulan

Rekomendasi:
1. Schedule replacement dalam 6 minggu
2. Increase monitoring frequency
3. Prepare spare parts
4. Plan production adjustment

Monitoring Plan:
- Vibrasi: 2x per minggu
- Temp: continuous
- Oil analysis: 2 minggu sekali